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In recent years, there have been significant advances in our understanding of

the functions of mitochondrial complex I other than the generation of

energy. These include its role in generation of reactive oxygen species, invol-

vement in the hypoxic tissue response and its possible regulation by nitric

oxide (NO) metabolites. In this review, we will focus on the hypoxic confor-

mational change of this mitochondrial enzyme, the so-called active/deactive

transition. This conformational change is physiological and relevant to the

understanding of certain pathological conditions including, in the cardiovas-

cular system, ischaemia/reperfusion (I/R) damage. We will discuss how

complex I can be affected by NO metabolites and will outline some potential

mitochondria-targeted therapies in I/R damage.
1. Mitochondrial complex I
Mitochondria have a well-recognized role in cellular energy production and in

the generation of biosynthetic intermediates required for cell replication. Oxi-

dative phosphorylation or the generation of energy by the aerobic catabolism

of carbohydrates, fatty acids and proteins includes the transfer of electrons

from metabolites to NADþ to form NADH, the universal carrier of reducing

equivalents. The only enzyme of the mitochondrial respiratory chain which cat-

alyses the oxidation of matrix NADH by the respiratory chain is complex I or

NADH:ubiquinone oxidoreductase. This is the major entry point for electrons

into the respiratory chain. The enzyme has an L-shape and consists of two

domains: hydrophilic, protruding into the matrix and hydrophobic, embedded

in the membrane. All known redox centres of this enzyme (FMN and eight

FeS clusters) are located within core subunits in the hydrophilic domain of the

enzyme [1]. Electron transfer is linearly organized from the flavin as a first

redox centre via FeS clusters towards a pocket for ubiquinone. Release of

redox energy at the last step at terminal cluster N2 results in the formation of ubi-

quinol and most likely drives long-range conformational changes within the

membrane part of the enzyme where proton translocation (4Hþ per NADH)

takes place [2–4]. This process is expected to be carried out by several Naþ/

Hþ antiporter-like subunits localized in the membrane domain. Unlike the 14

core subunits of prokaryotic enzyme, mitochondrial complex I also contains

around 30 additional accessory subunits, many with still unknown functions.

The catalytic properties of eukaryotic complex I are versatile (see [5] for a

review). First of all, the NADH:ubiquinone reductase reaction catalysed by

the enzyme is reversible. In vitro, during reverse electron transfer (RET), com-

plex I can carry electrons upstream from ubiquinol for NADþ reduction at

the expense of proton-motive force [5]. In addition, under physiological con-

ditions, complex I can catalyse the formation of reactive oxygen species

(ROS) such as superoxide and hydrogen peroxide [6–9] and at the same time

can be a target of ROS [10,11]. Several accessory subunits of complex I also

carry out some additional activities such as rhodanese [12], acyl-carrier proteins
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Figure 1. The A/D transition of mitochondrial complex I. The active form of the enzyme catalyses both forward and RET. Ischaemia drives deactivation of the
enzyme which can be greatly accelerated by free fatty acids and calcium. The D-form is unable to catalyse RET but reactivation (D! A) occurs after reperfusion,
when the enzyme is in slow turnover. Blue, yellow and grey domains stand for NADH-dehydrogenase, quinone reduction and proton translocation modules, respect-
ively. Relative location of the hydrophilic loop of ND3 subunit (red) based on X-ray structure of Yarrowia lipolytica [22] and mammalian enzyme [23,24] (PDB
ID: 4WZ7, 5LNK and 5LDW, respectively). Note that critical Cys-39 of the ND3 subunit is exposed only in the D-form and can be specifically modified
by nitrosothiols, ROS and RNS. Small spheres indicate the position of FeS clusters, the positions of FMN and ubiquinone are assigned by respective schematic
structural formulae.
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[13], thioredoxin [14] and are also involved in cellular signal-

ling in apoptotic and inflammation pathways [15].

The intriguing property of this mitochondrial enzyme from

mammals is the active/dormant (A/D) transition [16–19]. In

mammals, the A-form operates at physiological temperatures

if substrates (NADH and ubiquinone) are present catalysing

the redox reaction at a high rate of 104 per minute. If the

activity of the enzyme is hindered, i.e. when oxygen is lacking

or in metabolic hypoxia [20], complex I spontaneously con-

verts into the deactive, dormant D-form. This form can

potentially undergo re-activation given both substrates’ avail-

ability. As a result of slow (several times per minute)

catalytic turnover the D-form is converted back to the A-

form [16,21]. Based on the different sensitivities of the A-

and D-forms to SH-reagents, Galkin et al. identified Cys-39

of the mitochondrially encoded ND3 subunit as the residue

exposed only in the D-form of the enzyme (figure 1) [25,26].

The Cys-39-containing hydrophilic loop between transmem-

brane domains 1 and 2 of the ND3 was predicted to be

facing the mitochondrial matrix [25]. This was later confirmed

by the X-ray structure of the bacterial and mitochondrial

enzyme [22,27]. However, the exact location of the loop was

not very well defined in the initially published structures

[22,28], probably indicating its high flexibility. At least four

human pathogenic mutations in the vicinity of Cys-39 were

identified, indicating the importance of this region for complex

I function [29–31] (figure 1). Covalent modification of critical

Cys-39 in the D-form is most likely the cause of arrest of

activation even in the presence of substrates.

The exact molecular mechanism of the A/D transition is

unknown. The current consensus view is that the change in

position of the flexible loop ND3 is the main event

occurring during the A/D transition. This hydrophilic

ND3 loop is located between the Q and P modules of the

enzyme (figure 1) close to the N-terminus of the core

49-kDa subunit [23,24]. The lack of catalytic activity of the

D-form can be attributed to the disruption of the quinone

binding site [23,24] brought on by the A to D conformational

change. Most likely, a conformational change resulting in the

exposure of critical Cys-39 of ND3 involves not only this

loop, but also the components of other subunits in the
vicinity [32]. Thus, intermembrane helices of ND1 subunits

are confined between helixes of ND3, so that the cysteine-

containing hydrophilic loop is positioned above ND1. In

addition, the long N-terminal b-sheet of the core 49 kDa sub-

unit is probably in close contact with parts of the ND3 loop

[33]. Only the mitochondrial enzyme exhibits the A/D con-

formational change. Therefore, it seems likely that this

transition involves at least one of the accessory subunits,

e.g. 39 kDa (NDUFA9) [32], B14 (NDUFA6) and SDAP-a

(NDUFAB1) [34] or B13 (NDUFA5) [35] which are located

in close proximity to the hydrophilic loop of ND3

[23,24,28]. At least two different conformational states of

complex I were observed in recent cryo-electron microscopy

studies [23,24]. This information might help to further charac-

terize the structural differences between the A- and D-forms

and to better understand the link between A/D transition

and the catalytic cycle of the enzyme.

The physiological role of the A/D transition is still under

discussion. Most likely, the reversible A/D transition is an

adaptive mechanism of metabolic response to variation of

oxygen supply. As shown previously, no complex I was

found in the D-from in cultured cells at ambient oxygen con-

ditions [36]. However, in highly metabolizing tissues at

physiological oxygen concentrations [17,19,37], a significant

fraction of the enzyme (5–15%) was present in the D-form. It

can be concluded that in situ, part of the energy released

during steady-state NADH oxidation is used to maintain the

catalytically competent A-form [4]. Energy-dependent main-

tenance of the fraction of the enzyme in the D-form would

permit a fast response to changes in conditions such as

oxygen availability and ATP demand resembling the so-called

excess capacity of cytochrome c oxidase [38,39]. Therefore, the

A/D transition could be one of the mechanisms for the fine-

tuning of oxidative phosphorylation activity in different tissues.

At low oxygen pressure, when the respiration rate is

decreased, all components of the respiratory chain are over-

reduced due to the lack of terminal electron acceptors and

low activity of cytochrome c oxidase. The ratio of membrane

ubiquinone : ubiquinol is very low and complex I activity dra-

matically drops because of the lack of substrate. Therefore,

the steady-state equilibrium in the A$ D reaction would
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be shifted to the right and the enzyme would be readily con-

verted into the D-form within minutes in tissues such as the

brain and heart [17,19,37]. The time course of complex I deac-

tivation after cardiac arrest reveals a much faster deactivation

in brain compared with heart tissue [37] and may explain the

greater vulnerability of brain function to oxygen deprivation.

The rate of reactivation is strongly decreased by calcium [21]

and fatty acids [40]. Free fatty acid content of the mitochon-

drial membrane increases several fold in acute cerebral or

cardiac ischaemia [41–43]. In ischaemic cardiac and cerebral

tissue, deactivation of complex I [36,37] concurs with

accumulation of free fatty acids, [41–43] as well as various

acyl-carnitine and acyl-CoA esters [44] making these metab-

olites plausible endogenous effectors of A/D transition

in situ. Tissue reoxygenation results in the return of the

enzyme A/D equilibrium to its basal pre-hypoxic level, indi-

cating that restoration of oxygen reactivates the D-form of the

enzyme and converts it to the A-form [17,19,37].

Deactivation of complex I has physiological significance in

a process of ischaemia/reperfusion (I/R) injury. The molecular

details of this mechanism are explained below. Complex I has

been recognized for a long time as one of the major sources of

ROS production by the mitochondrial respiratory chain—

mostly superoxide (O�2 ) and hydrogen peroxide (H2O2) [7–

9,45–51]. It has been recognized that in vitro ROS production

is significantly higher when complex I is in conditions when

electron transfer is reversed by the proton-motive force from

ubiquinol upstream towards enzyme FMN for NADþ

reduction in [8,9,47,48,52–58]. It should be stressed that

there is no evidence of RET occurrence in mammalian tissue

physiologically because succinate is generated stoichiometri-

cally by NAD-dependent dehydrogenases in the Krebs cycle

and the net electron flux through complex I is always forward.

At the same time, high levels of succinate can accumulate

under ischaemia/hypoxia in various tissues [59–62]. After

reintroduction of oxygen, complex I can be contained in a

‘RET-like’ state since succinate is used to keep the quinone

pool in the reduced state and potential across the membrane

is present. In these conditions, complex I could potentially gen-

erate superoxide at a considerable rate. As shown in

pioneering work of Vinogradov’s lab, the D-form of the

enzyme is unable to catalyse RET [16]. In the D-form, transfer

of electrons from ubiquinol upstream is interrupted. Therefore,

all redox centres of complex I including flavin and FeS clusters

cannot be reduced. This fully blocks ROS production from the

enzyme in conditions when RET is expected, i.e. at the early

phase of reperfusion. It follows that, after ischaemia, mitochon-

dria containing the D-form of complex I would have reduced

capacity to generate ROS during reoxygenation.

This mechanistic model readily explains the experimental

observations on I/R. Increased ROS production by mitochon-

dria is associated with detrimental consequences of I/R injury

[63–65] and decreased ROS production and oxidative stress

protects tissues during reperfusion [11,64,66,67]. At the same

time, transient inhibition of complex I during post-ischaemic

reperfusion would protect mitochondria and decrease I/R

damage in various highly metabolizing tissues [61,68–72].

Thus, the deactivation of complex I can be considered an intrin-

sic switch preventing the sharp burst of respiration associated

with ROS generation during the initial phase of post-ischaemic

reperfusion. This mechanism offers a unified and verifiable

explanation to the complex changes in cell oxidative metab-

olism caused by I/R. The process of deactivation of complex
I in ischaemia provides a novel potential target for

pathology-activated pharmacological intervention.
2. Complex I and nitric oxide metabolites
Nitric oxide (NO) is a gaseous endogenous mediator playing

an important role in signal transduction in the cardiovascular

and immune systems, as well as in carcinogenesis [20,73–76].

NO structure resembles that of an oxygen molecule, there-

fore, the interaction of NO with cytochrome c oxidase, the

terminal enzyme of the mitochondrial respiratory chain,

was described long before the biological significance of NO

through activation of soluble guanylate cyclase was recog-

nized [20,77]. NO is a competitive inhibitor of the enzyme

with respect to oxygen, but unlike the latter, NO binds to

both the reduced and the oxidized forms of the cytochrome

c oxidase [78]. It was shown that signalling consequences in

hypoxia may be profoundly modified by NO via inhibition

of this enzyme [79]. Upon NO binding to cytochrome c
oxidase, available oxygen is redistributed towards non-

respiratory oxygen-dependent targets such as prolyl hydro-

xylases so that they degrade HIF-1a and therefore cells do

not register hypoxia [79].

It should be stressed that since NO is a competitive inhibi-

tor, lowering the apparent affinity of cytochrome c oxidase to

oxygen [20,80], it would strongly synergize with hypoxia and

induce deactivation of complex I as explained previously. It

can be expected that in the presence of physiological concen-

trations of NO, complex I can undergo deactivation even in

mild hypoxia. More generally, inhibition of energy transfer

downstream of complex I in situ (endogenous inhibition of

respiration by carbon monoxide [78] or fatty acids [81,82] as

well as release of cytochrome c [83]) also would shift the

A/D ratio of the enzyme towards accumulation of the D-

form. In addition, NO is a precursor of several so-called

NO metabolites such as peroxynitrite (ONOO2) and low

molecular weight nitrosothiols, e.g. S-nitrosoglutathione

[84,85]. The latter could be involved in transnitrosation/oxi-

dation reactions of protein-free thiols providing a cGMP-

independent NO signalling pathway for regulation of

enzymes structure and activity.

More than 30 years ago, inhibition of complex I-mediated

respiration was demonstrated in cultured cells after incubation

with activated macrophages [86] which later was identified to

be due to NO [87]. Subsequent studies identified ONOO2 as a

compound responsible for the NO-dependent inactivation of

several components of the respiratory chain [88–90]. Monca-

da’s group first found that prolonged exposure of cells to

high concentrations of NO led to persistent inhibition of com-

plex I which was attributed to nitrosation of protein thiol

residue(s) [91–93], a finding that has been confirmed by

other groups [94–98]. Although the degree of inhibition of

complex I caused by various NO donors has been extensively

investigated, the precise mechanism and nature of the targeted

subunit(s) as well as the possibility of nitrosation of complex I

in vivo have not been established.

It was shown long ago [99] that deactivation increases sus-

ceptibility of complex I to covalent modifications by SH-

reagents. This was later found to be due to the conformational

change resulting in exposure of Cys-39 of ND3 subunit upon

enzyme deactivation (A to D transition) [25]. We found that

sensitivity of complex I to S-nitrosothiols and peroxynitrite is
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governed by the A/D status of the enzyme in vitro [36,100].

NO-metabolites can react with the critical Cys-39 subunit in

the D-form and block enzyme activation. The activity of the

S-nitrosated enzyme could be restored by thiol-reducing

agents [36,100], while treatment by peroxynitrite or ROS was

found to be irreversible [19,36,100]. Cys-39 of the ND3 subunit

of complex I in the D-form was found to be a target for ROS or

RNS, so inhibition of the enzyme in mouse heart mitochondria

was a result of this thiol oxidation [19]. In a further elegant

study from Murphy’s laboratory, Cys-39 was identified as a

critical residue nitrosated by mitochondrially targeted nitro-

sothiol MitoSNO [71]. This novel compound is composed of

two structural units: one provides hydrophobicity and positive

charge ensuring membrane permeability and accumulation

in mitochondria in which potential across the membrane is

present (negative inside). Another unit is S-nitroso-N-acetyl-

penicillamine, a low molecular weight nitrosothiol able to

donate an NO-moiety to protein thiols. Administration of

MitoSNO before reperfusion in a mouse model of cardiac

infarction inhibited complex I and significantly decreased the

volume of cardiac infarction most probably via lessening oxi-

dative damage [71,101]. The ischaemic state of the tissue is

characterized by accumulation of significant amounts of succi-

nate [59–62,102] so that upon reperfusion complex II can

potentially oxidize the accumulated succinate, which drives

RET through mitochondrial complex I [62]. These RET-like

conditions upon reperfusion could lead to increased ROS gen-

eration from the enzyme flavin. Nitrosation of critical Cys-39 of

ND3 delays activation of the enzyme during early reperfusion

prevents electron transfer to flavin and therefore decreases pro-

duction of ROS. This thiol group can be subsequently

recovered via denitrosating by the thiol-reducing system in

the mitochondrial matrix, therefore providing reversibility of

complex I inhibition [71,103–105]. The exact time frame of

such protective nitrosation in vivo is not currently known, but

it is likely to occur within minutes [71].

Several points should be considered when discussing the

mechanism above:
1. After an ischaemic episode all of the redox components of

the respiratory chain including quinone and pyridine

nucleotides (NAD and NADP) are in the reduced state.

The process of RET, as defined originally [106], cannot pro-

ceed in the absence of oxygen since there is no NADþ to

accept electrons from complex I, therefore there is no

actual ‘transfer’ of electrons from quinol upstream. How-

ever, over-reduction of complex I flavin with partial

leakage of electrons to oxygen rather than true reduction

of NADþ san take place when the potential across the mem-

brane is present and the quinone : quinol ratio is very low.

2. Ischaemic accumulation of succinate in tissues found in

several studies on rodents [59–62,71,102] may not be

present in human tissues [107].

3. Superoxide production of complex I is strongly inhibited

by NADH or NADPH in the micromolar range [6,48],

whereas the concentration of these nucleotides in the mito-

chondrial matrix is millimolar [108]. In these conditions,

the capacity of complex I to generate ROS is low. Thus,

the possibility of other enzymatic systems upstream of

complex I involved in ROS generation in the RET-like con-

dition is very likely. For example, a role of ketoglutarate

dehydrogenase should be further reinforced, since this
enzyme is linked to the NADH/NADþ pool together

with complex I [109–112].

4. Reversible nitrosation of Cys-39 in the D-form may not only

block ROS generation from complex I, but also protect this

critical thiol from irreversible oxidation by ROS or peroxy-

nitrite known to form during the early phase of I/R [113,114].

3. Modulation of A/D as an example of
pathologically activated therapeutics

Identified conformational differences between the A- and

D-forms offer an opportunity for the development of the

so-called pathologically activated therapeutics for ischaemia-

associated pathologies. For example, the Cys-39 residue of the

ND3 subunit is only exposed in the D-form, which is accumu-

lated in the ischaemic area of the tissue. Thus, any treatment

aimed towards this critical thiol would influence the enzyme

only in the affected area. The enzyme in normoxic tissue

would not be affected by pharmacological agents targeting

only the D-form. Taking into account that there are other sub-

units, such as 39 kDa, involved in deactivation [32], several

pharmacological approaches can be used to affect the D-

form only.

On the other hand, compounds that modulate the A/D

transition may be promising for widening the window for

pharmacological intervention in ischaemic conditions, such

as stroke, heart infarction and organ transplantation. Com-

pounds with the ability to shift the A/D ratio towards the

A- or the D-form may be very useful tools.

It has been shown that metformin, the common bigua-

nide-type drug for the treatment of type II diabetes, directly

inhibits complex I [115–117]. Deactivation greatly enhances

the sensitivity of the enzyme to metformin [118]. The rate of

inhibition of the enzyme was significantly higher when met-

formin was pre-incubated with the D-form (resting enzyme),

than with the A-form [117]. It was suggested that deactiva-

tion of the enzyme may facilitate the binding of metformin

to complex I in the region of the critical ND3 loop [117].

Apparent suppression of complex I activity observed in sev-

eral studies [117,118] can be explained by specific effects of

biguanides on the rate of activation rather than classical inhi-

bition of the D-form. When activation is decelerated, the rate

of NADH oxidation corresponds to the (small) fraction of the

A-form that is present during the initial phase of the assay.

Similar to free fatty acids or divalent cations, biguanides

may decrease the rate of activation. In the conventionally

used kinetic assays, this could be manifested as apparent

inhibition of the activity [109]. Thus, metformin and similar

compounds act on stabilization of the D-form and this

effect may contribute to their therapeutic effects.

Observations made in our laboratory and other labora-

tories suggest that development of pharmaceutical agents

targeted towards Cys-39 of mitochondrial complex I may

provide a pathologically activated therapy for various cardio-

vascular disorders associated with ischaemia aiming to

prevent I/R injury.
4. Conclusion and perspectives
Impressive progress has been achieved in recent years in our

understanding of the structure of mitochondrial complex I

[22–24,28]. The surprising success of potential complex I
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inhibitors in protection against I/R injury [61,68–72] and Alzhei-

mer’s disease [119] requires additional studies for understanding

the molecular details underlying their therapeutic effects.

Studies of the regulation of complex I remain an important

area for current translational medicine [71,119–124].

The A/D transition of complex I can be considered an

attractive target for modulation of complex I activity; however,

it is still not clear what the driving force is for A/D transition

and what subunits are involved in the conformational change.

We think that the identification of pharmaceutical compounds

targeting the rate of activation or deactivation, and modulating

the A/D state of the enzyme in situ is an attractive area of
research. Further characterization of the A/D transition may

provide a better understanding of the regulation of the mito-

chondrial response to oxygen deprivation and oxidative

stress. It may help to develop novel therapeutic compounds

for cardiovascular conditions, such as cardiac infarction,

stroke and other ischaemia-associated pathologies.
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