

Reactive oxy	gen intermediates
02	Oxygen
Energy transfer O_2 + energy $\rightarrow {}^1O_2$	Singlet oxygen
One electron reduction of molecular oxyger $O_2 + 1e^- \rightarrow O_2^{}$	n Superoxide radical
SOD - Dismutation of superoxide radical $O_2^{-} + O_2^{-} + 2H^+ \rightarrow H_2O_2$	Hydrogen peroxide
Transition metal catalysed reactions (Fenton reaction) $Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^- + OH$	Hydroxyl radicals
Reaction with nitric oxide (k~ 6.7×10 ⁹) $O_2^- + NO \rightarrow ONOO^-$	Peroxynitrite
$\begin{array}{l} Myeloperoxidase\ reaction\\ H_2O_2+Cl^-+H^*{\longrightarrow}H_2O+HClO \end{array}$	Hypochlorite

The Cellular P	roduction of H	vdrogen Per	oxide
The Centuar I	Iouucuon of II	yurugen i en	UAIUC
By ALBERTO BOVERIS,*	NOZOMU OSHI	NO and BRIT	TON CHANCE
Johnson Research Foundation, Un	viversity of Pennsylv	ania, Philadelphi	a, Pa. 19104, U.S.
(Re	eceived 20 December	r 1971)	
Table 6 Fatimation of the	-Castinguese of the interes		in and Rear
Table 6. Estimation of the a	effectiveness of the intrace	$Hular sources of H_2O_2$	in rat liver
For details see the text. Expe	memai values are taken	from Tables 1-5 and	rigs. 5 and 6.
Fraction and substrate	(nmol/min per mg of protein)	Protein content (mg/g of liver)	Production of H ₂ C (nmol/min per g of liver)
Mitochondria	—	25	
Endogenous substrate	0.16		4
Succinate	0.50		12*
Microsomal fraction	0.12	25	•
NADPH	1.70		3 42*
Peroxisomes	1.10	20	42
Intraperoxisomal endogenous substra	te 2.2		44
+Supernatant	8.6		172
Estimated (see text)	5.0		100
Supernatant		40	30-
Endogenous substrate	0.1		4*
Homogenate		140	
Endogenous substrate	0.27		38
 These values are cons 	idered as the physiological	rates of H2O2 production	on.

Mitochondria are the first to be affected by the lack of oxygen during hypoxia or tissue ischemia.

How does ROS generation by mitochondria depend on concentration of oxygen in a physiologically relevant range?

		Am. J. Phys	iol. 1932, 103: 235-236
IE EXTRA RESPIRAT	ION OF PHA	GOCYTOSIS	
C. W. BALDRIDGE	AND R. W. GER	ARD	
From the Department of Phy	siology, Universit	y of Chicago	
April 14 1932 Tw	o-tenths cubic cer	ntimeter dag leucacyte p	este in 0.6 cc. dog
April 14, 1932. Tw serum: 0.1 cc. N/10 N	ro-tenths cubic cer [aOH in inset: on	ntimeter dog leucocyte pa set. 0.2 cc. Ringer, plus	aste in 0.6 cc. dog
April 14, 1932. Tw serum; 0.1 cc. N/10 N suspension.	ro-tenths cubic cer VaOH in inset; on	ntimeter dog leucocyte pa set, 0.2 cc. Ringer, plus	aste in 0.6 cc. dog $\frac{1}{10}$ ink or sarcina
April 14, 1932. Tw serum; 0.1 cc. N/10 N suspension.	o-tenths cubic cer aOH in inset; on 	ntimeter dog leucocyte pa set, 0.2 cc. Ringer, plus	aste in 0.6 cc. dog to ink or sarcina MT INITIAL VALUE
April 14, 1932. Tw serum; 0.1 cc. N/10 N suspension. <u>TIME IN MINUTES</u> 70	ro-tenths cubic cer IaOH in inset; on oxygen consum 100	timeter dog leucocyte pa set, 0.2 cc. Ringer, plus	aste in 0.6 cc. dog to ink or sarcina NT INITIAL VALUE 100
April 14, 1932. Tw serum; 0.1 cc. N/10 N suspension. <u>TIME IN MINUTES</u> 70 After tipping	vo-tenths cubic cer VaOH in inset; on oxygen consum 100 India ink	timeter dog leucocyte pa set, 0.2 cc. Ringer, plus rinon of LEUCOCYTES, IN PER CEI 100 Sarcina in saline	aste in 0.6 cc. dog to ink or sarcina NT INITIAL VALUE 100 Saline
April 14, 1932. Tw serum; 0.1 cc. N/10 N suspension. 	ro-tenths cubic cer IaOH in inset; on OXYGEN CONSUM 100 India ink 93	timeter dog leucocyte pa set, 0.2 cc. Ringer, plus rion of LEUCOCYTES, IN PER CEI 100 Sarcina in saline 423	Aste in 0.6 cc. dog to ink or sarcina NT INITIAL VALUE 100 Saline 154
April 14, 1932. Tw serum; 0.1 cc. N/10 N suspension. <u>TIME IN MINUTES</u> 70 After tipping 15 45	To-tenths cubic cer TaOH in inset; on OXYGEN CONSUM 100 India ink 93 95	timeter dog leucocyte pa set, 0.2 cc. Ringer, plus rion of LEUCOCITES, IN PER CEI 100 Sarcina in saline 423 128	Aste in 0.6 cc. dog to ink or sarcina NT INITIAL VALUE 100 Saline 154 104
April 14, 1932. Tw serum; 0.1 cc. N/10 N suspension. TIME IN MINUTES 70 After tipping 15 45 105	vo-tenths cubic cer NaOH in inset; on OXYGEN CONSUMN 100 India ink 93 95 100	100 Sarcina in saline 423 128 81 81	Aste in 0.6 cc. dog to ink or sarcina NT INITIAL VALUE 100 Saline 154 104 88

1000 - A A	At least two types of granules		
Tage of	Azurophil granules (primarv)	Specific granules (secondary)	
1. S. C. P. S.	0.5 μm 1500 per cell	0.2 μm 3000 per cell	
	Lysozyme – breaks cell wall Myeloperoxidase - hypoclorite Defensins – pore forming Serporocidins - protease BPI – increases permeability	Lysozyme - breaks cell wall NADPH-oxidase - superoxide Alkaline phosphatase Lactoferrin – iron binding Transcobalamin - binds Vit B ₁₂	
pg	Work inside phagocytosis of particles	Work outside exocytosis	

